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1. INTRODUCTION

The general problem of finding the best uniform approximation, in a given
interval, of a polynomial of degree m by a polynomial of degree n <C 1 has
been solved analytically in only two cases: (i) by Chebyshev, whenm = n + 1,
(ii) by Zolotarev, when m = n + 2. In case (i) the solution is expressible in
terms of the Chebyshev polynomial 7,,(x). In case (ii) the solution (see for
example Achieser [1, p. 280]) involves elliptic functions. Chebyshev did in
fact consider the general case in [4], and showed that hyperelliptic functions
are involved, but he did not obtain any solutions.

Since analytic solutions are effectively excluded when m > n + 2, another
approach is required. This was first provided, for large »n, by Bernstein [3] and
Achieser [2]. It consists in seeking a rational function which (a) is a good
approximation to the given polynomial, and (b) has a fractional part which
for large n is small in the interval. Its integral part is then the polynomial
approximation desired: not optimal, but asymptotically optimal.

In 1964 Clenshaw [6] considered the ratio S,/E, of the uniform error norms
S, and E,, respectively, of the trancated Chebyshev expansion of the given
polynomial and the best uniform approximation. He used Bernstein’s method
to estimate E, when m — n = 2, 3, or 4, but could go no further because of
the complication of the calculations. Clenshaw was interested in a question of
practical importance, namely, whether the truncated Chebyshev expansion,
which is easy to obtain, is or is not nearly as good an approximation as the
optimum. He therefore tackled the problem of finding the maximum value
of S,/E, for a given m — n. Subject to an assumption which he verified
experimentally, Clenshaw solved the problem for the three cases mentioned,
and noticed some surprising regularities in the solution, in particular the fact
that certain constants obtained were the first 2, 3, and 4 coefficients, respec-
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tively, of the binomial expansion of (1 — #)~1/2 He put forward the con-
jecture that this would generalize for any value of m — #, and on this basis
obtained a general formula for max(S,/E,).

The first published proof of Clenshaw’s conjecture was given by Lam and
Elliott [8] in 1972. Using the same method and assumption as Clenshaw, they
were able to generalize his results to any value of m — #, although they
failed to consider the important question of whether the error of approxima-
tion must always be representable in the form they assumed for it. This
ormaission was remedied in their recent second paper [7], in which not only is
this question considered, but the norm of error is shown to be given by an
eigenvalue of a certain matrix. That this should be so is not at all surprising
however, for as is clear from the author’s papers [10] and [11], any problem
of uniform approximation of polynomials or rational functions by polyno-
mials or rational functions is likely to lead to an eigenvalue problem.

The present paper uses a simplified form of the “w-method” developed
in [10, 11}, to deal with the problem treated by Lam and Elliott. Our
treatment differs significantly from theirs; we use standard resulis from
approximation theory rather than matrix theorems. Not only does this lead
to some simplification, but it also provides a proof that the desired sclution
exists unconditionally. A proof of Clenshaw’s conjecture is also given.

2. PRELIMINARY DISCUSSION
We denote the given polynomial of degree m by f(x), and for convenience
write m = n -~ r + 1. We take the given interval as [—1, }]. Let f({x) have the
expansion (with a. == 0)
F ) = a,.Tu(%) + G, Tpa(x) + 0+ g Tra(x) + lower order terms. {3}

Then the error norm S, of the truncated expansion is

S, =\la.Typ + - + 2y [ {

[\

}
where | - |} denotes maximum modulus in [—1, 1]. The error norm £, of the
best nth degree polynomial approximation 2, to f is

Ey=jof | P—f] =P, —f (3)
where P, denotes the set of all real polynomials of degree <C . We note that

by the Alternation theorem, P, — f = J-E, alternately at » - 2 or more
points on {—1, 1].
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Instead of finding P, we shall obtain an infinite set of rational functions
Q/D, where Qe P, .., DeP,, with error function

R=(Q/D)—f=M[D, M=Q—Df “

such that R = 4 || R|| alternately at n + 2 or more points on [—1, I]. A
unique member of this set is of course the “best” or optimal rational approxi-
mation, i.e., that which minimizes || R || for all possible choices of Q€ P, _, ,
DeP,. As is well known, this R exhibits alternation not merely at n -+ 2
points but in general at n + 2r + 2 points. We shall show that another like-
wise unique member of the set has instead the special property that
I Fr(Q/D)|| — 0 as n — oo, where Fr denotes “fractional part.” Its integral
part is then the desired polynomial approximation to . We shall call this
member of the set the “‘asymptotic @/D.” In order to prove its existence we
shall demonstrate a close “dual” relationship between the desired function
Q/D and the optimal rational approximation to a certain polynomial g of
degree m related in a special way to f. Since the algebraic solution for the
asymptotic Q/D is exactly the same as for the optimal Q/D, we shall start by
considering the problem of finding the optimal approximation Q/D to f.

If for this optimum, expressed in its lowest terms, the actual degrees of D
and Q are, respectively, s =r —d and n+ s =n -+ r — d’, where d,
d’ > 0, the problem has “deficiency” § = min(d, d"), and by the Alternation
theorem for rational approximation (see for example Rivlin [9, Theorem 5.2],
R = + || R|| alternately at « = n -+ 2r -+ 2 — § or more points on [—1, 1].
Let £ = || R|| . Then R?® — E? has at least « distinct zeros in [—1, 1], of which
7 < 2 are at the end points 41 and x« — 7 are internal and of order at least 2.
Thus M? -— E%D? has at least 2(k — 1) + 7 = 2k — 7 zeros in [—1, 1]},
counting multiplicities. But its degree is 2(m + s) << 2(x — 1), since s < r -8,
It follows that 7 = 2, i.e., R = 4 F at both end points, and that § =d, i.e.,
s" < s, so that Q has degree at most z + s. Further, M? —- E2D? has precisely
x — 2 internal zeros of order 2, and no external zeros. We may therefore
write, noting that M2 — E2D? < 0in[—1, 1],

M?— ED? = (x2 — 1) W2, (5)

where Wis real, of degree n + r + s, and has all its roots in (—1, 1).

It is clear that if M, D, W is any triplet of real polynomials satisfying (5)
for some value of E, then | M/D | = E. We shall see that if we start with any
suitable D (viz, real D as in (10) below) we can obtain many such triplets. In
general the corresponding O = M + Df will have degree m - s, but as we
shall see, if we impose the condition found above that @ shall have nominal
degree n + s instead of m + s, then we can obtain both the optimal @/D and



[
~d

APPROXIMATION BY POLYNOMIALS 2

the asymptotic g/D which we seek. In Section 3, we obtain general solutions
of {5) and consider the implications of the desired asymptotic property, in
Section 4 we involve the given f explicitly by imposing the degree condition
on @, and in Section 6 we use the existence of the optimal @/D to establish
the existence of the /D sought.

The method used is that already described in the anthor’s earlier papers [10,
11]. However, a key step in the process, namely, the factorization of (I8}
below, is treated much more simply here than in those papers, where the
treatment was based on the rather complicated surd factorization theorem
in {10]. For the sake of completeness the method is described in full, reference
to [10] being made only at one point in Section 4.

Remark. The method to be described requires (5) or an equivalent
equation as a starting point. Unfortunately best-approximation problems
involving polynomials and rational functions do not always lead to equations
of this form. For example, in the case r = 1 (i.e., the case solved by Zolotarev}
the optimal error function satisfies an equation either of the form

R — E2 = (x + 1)(x — B) W*

{sc that only one of the end points is a “‘norm-~point”) which is reducible to
the form (5) by a simple linear transformation in x; or of the form

R — E? = (x* — D(x — )(x — By W?

which requires elliptic functions for its solution, and cannot be dealt with by
the present method.

3. GENERAL SOLUTIONS OF {5)
We rewrite (5) as
M?— (x® — 1) W2 = E2D? (6}
and make the left-hand side factorizable by means of the substitution
x = $(u + v, N
giving
x2 — 1 = Hu — u)2 (%)
We note that

Tx) = ¥ + u™), k=2¢012,... &)
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Now to allow for possibly degenerate solutions we suppose D has degree |
s=r—d,d>=0,say

D=]lx—x), x¢[-LI1] (10

1

Each x; can be expressed as
x; = Yy + 157, (.

where there are two possible values of u; , reciprocals of each other.
Combining (7) and (11) gives

X — x; = (—12u)(u — u)(W@™ — uy), (12)
so that if we write
B = [T — ) = $a* + - + dutt + o (13
we have
D = (1/2°¢g) $u) p™). (14)
We now define
pu) = M(x) + 3(u — u™) W(x), (15)

with the sign of W chosen so that p(u) is of order O(u™+%) for large u (i.e.,
there is no cancellation of leading terms in (15)). Then

pu™) = M(x) — 3(u — u™) W(x). (16)
and we have
M = {(p(u) + p(u™)), (17
while by (6)
p() p(u™) = (E[2°¢e)* $*(u) $2(u™). (18)

Now by (15) and (16) p(x) and p(u—) have no poles except possibly at u = 0,
so by (18) they can have no zeros except at # = 0 and at zeros of ¢(u), d(u2).
There are then only two distinct possibilities arising from (18):

@) p) = (—N2°¢y) $*(w) u", (A = E, 7 an integer),

(0) p) = (—2/2°¢g) $1(u) po(u™) bo*(ue) u”, where ¢y(u) bolu) = H(u).

or
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Case {(b) leads to a solution in which M, W, and D automatically have
common factors, and we disregard this as it is not needed. An apparent
modification of (a) in which some or all of the factors of ¢(u) are replaced by
corresponding factors of ¢(u?) is easily seen to lead ic the same solution as
(a), bearing in mind that

1 g o — gy g1
Hi u; uu W — uh),

where 7" is an alternative choice for u; , for a given x; . Thus we shall take (a)
as our expression for ¢(u). Since p(u) = O™+*), it follows at once that

T=m—s=n-+1-+4d
Thus
o) = (—A2%) un T+ (1) (A= L+E E= 4}, (19
and
M) = (= N2 02 () 4 un-iod (™)), (20)

Now if the x; are all distinct (and otherwise a continuity argument may be
used),

where
— A i 5
A/[(_Xj) = W uj_“_l_d(]sz(ll;l).

As will be seen in Section 4, the u; and A depend only on the r -+ 1 prescribed
leading coefficients in the expansion (1) of f, and not at all on ». Hence

1 Fr(Q/D)|| >0 asn— oo if and only if all | #; | > 1.2 25

Now any solution Q/D, after reduction if necessary to lowest terms, ¢or-
responds to M and D without common factors. This means by (14) and (20)
that é(u) and &(z') then have no common factor, in other words | #; | == 1

! The remaining coefficients are unimportant, for they contribute merely an addizive
polynomial of degree » to the solution.

2 Obviously for any given D satisfying (10) the «; can be chosen to satisfy the condition
lu; | > 1. However, we still have to impose the degree condition on @, which in fact
takes the form (26}, and so determines ¢(x) rather than D{x). Thus, the choice of «; is not
at our disposal, and it will be our task in Section 5 to show that there is a solution ¢(u}
of (26) which satisfies the condition in (21).
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for all j. (Note that this also implies that our solutions, when in lowest terms,
satisfy the condition on the x; in (10). This follows alternatively directly
from (6).) Thus if we denote by 8 the number of zeros u; of () inside the
unit circle, the asymptotic property sought will be achieved if § = 0.

We now derive a simple general relation between 8 and the number « of
alternation points on [—1, 1] (i.e., points at which R = 4+ F alternately.)
For this, we note that the transformation (7) maps the semicircle u = ¢,
0 << 0 < 7 onto the interval 1 > x > —1, where x = cos §. On moving
round the semicircle, we have by (19)

dargp=@m+ 1 + d)ym + 28
On the other hand, we have on the semicircle
plu) = M + iWsin 0,
where M and W are real, so that
dargp = (o — 1) 7.
It follows that
a=n-+2-+d-+ 28 (22)

Thus for any solution of (5) in which D has degree s = r — d the number of
alternation points must be at least # -+ 2 + d, and for the asymptotic solution
we seek (if it exists) for which 8 = 0 the number is precisely n + 2 + 4, i.e.,
in the case d = 0 the same as for the optimal polynomial £, . For the optimal
rational function on the other hand the number is at least «k =n -2 -
2r — d, so that for this solution 8 must be equal to s, its maximum possible
value.

We have thus exhibited a kind of inverse relationship between the optimal
and the asymptotic Q/D. We shall see in Section 6 that there is a further
relationship between these two through which we can prove the existence of
the asymptotic @/D. Now assuming this for a moment, suppose that the
alternation points in [—1, 1] are 3,, ¥»,... in ascending order. Then if
P =Tnt(Q/D),

P(ye) —f(3) = (=D E — Fr(Q/D)(ys), k=1..n+2+d,

where € = 4-1. Thus if || Fr(Q/D)|| = v < E, P — f alternates in sign at the
Y, and, using de la Vallée Poussin’s theorem (e.g., Cheney [5, p. 77])
accordingly,

E—v<Eue<E<|P—fI<E+v (23)
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Now as we have seen, v — 0 as n — oc, and moreover, because of the form
of fin (1), if a, is the first of gy, ¢, ..., which is nonzero, £, = E,., =
ta,|,if n = r/2 (see [5, p. 137 Theorem 5]). It follows that, for fixed r and
fixed aqy ,.... g,

EIE,—1 as i — <. (24)

Remark. When ¢(u) is known, the internal norm-points of error, where
R = +F or —E, may be found jointly as the roots of W{(x) = 2(p{u} —
plu)/(w — ). They may however be found separately as roots of two
pelynomials each of about half the degree of W, for by (4), (14) and (20}

A w2

RE¥ A =g,

(25)
where
W = DD Gy LD Ty
1 n + 4 1s odd, say 2k — 1, the identities
uh 4 = 2T(x), ut — gt = 2(x — IR U (%)
give
wy =T+ -+ ¢sThs,
w_ = (x> = PP (PUpy + -+ + Un o).
while if # + 4 is even, say 24, the identities
WG B0 — [ £ DI (U() T Uial9)
give
ws = [3x & DI (F $oUna + (do F ¢) Up + -
+ (Por T ¢ Ussorx 1 6:Up -

The internal norm-points are roots of w. other than 1 or —1. They may of
course also be found directly from w.. above as functions of .

4. SoLuTioNs FOR GIVEN f(x)
We have so far considered solutions of (5) with arbitrary D of degree s

{and nonzero on [—I, 1]), but without reference to f(x). We must now
impose the condition that Q = M -~ Df has degree 1 -+ s (or less) instead of
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m-+s=n+s+r-+ 1. Now for large u we have, on dividing by ¢(u),

M + Df —A n+d+1 — 1
T = 2o, T + OG™)

1
gy (ot g A )
X (ar“m -+ ar~1”m_l e _{_ a0un+1 + )

while Q/$(u) = O(u™). Equating coefficients of u™+, u"+2,..., u™ on both sides
of the equation

(M + Df)|$(u) = Q/p(x)

gives a set of equations which may be written

[ay a a; - - - ay a ] [ éo] [ 0]
a, 4 todr ¢ :
612 ° 0
’ ’ = A ‘150
26
s, b 20
0 .
a1 Q; 0 .
L a, _J _ O _ _¢s_}
or briefly
Ay = Ay 27

where A is the (r + 1) X (r 4 1) triangular Hankel matrix shown, ¢, is an
(r + 1)-element vector consisting of the s +- 1 coeflicients of ¢(u) (forming a
vector ¢, say) supplemented by d zero elements, and S is a shifting matrix
defined by

Sy =1 fi=j+1=2,.,r+1,
=0 otherwise.

Now it is clear by inspection of (26) that if A, is the matrix (with leading
element a;, and of similar form to 4) obtained from A by deleting the first /
rows and the last /& columuns (so that 4, = A), then (26) implies that

Agrdw = A%, k=0,1,.,d (28)

Thus in particular A is an eigenvalue of 4; and ¢ an eigenvector. It is now
obvious that with such A and ¢, if d > 0 the first d equations in (26) will not
in general be satisfied. Thus in general we must have d = 0, and A an eigen-
value of A4 with eigenvector ¢.
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In exceptional (degenerate) cases however (27) may have a2 solution for
some ¢ > 0. It then follows (as was shown in [10]) that the equations

Ay = ASFyay, (2%

Azgy = —AS*zg . (30

both have solutions for ¥ = d — 1, d — 2,..., 1, 0. {These solutions
correspond to multiplying () by one or more of 1 + &, 1 — u, or factors
of the form 1 - 2cu -+ u® (with arbitrary ¢), and hence D, M, and O by one
or more common factors x + 1, x — 1 or (x 4 ¢)2) In particular, taking
i = 0. 1t follows that if (27) has a solution for some & > 0, then although
¢y is not an eigenvector of 4, both A and —A must be eigenvalues of 4. (In
fact, as was shown in [10], A is an eigenvalue of order at least [{{d — 2)] and
—A of order at least [L({d + 1].)

For eigenvalues A of 4 we shall denote by d()\) the largest value of 4 for
which (27) has a solution; for non-eigenvalues A it is convenient to let d(A) =
—1. Now (27) has a solution if and only if the first r -1 —d =5+ 1
columas of 4 — AS? are linearly dependent, i.e., the matrix

Gy ay a,

) “vr—i

a; — A a,
Qgey Gz — A ‘ 35
a, — A 0
—A
0

L a, —A

has rank at most 5. Thus if A is an eigenvalue of A4, d(A} is the maximum value
of d for which this is true.
From the results above it is clear that for any A,

Pd) —d(—N)] < 1. (32)
We note next that just as (27) implies (28), s0 (29) and (30) imply

Ak—h Yo = }\Sh Y (33)
O<<h<h<d—1:
Ar g Zgy = —AS* Zgy, (34)
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whence A and —A are eigenvalues of all 4,, 0 <k < d — 1, if (27) holds,
while as we have seen Ais also an cigenvalue of 4, . We note also that since by
assumption a, == 0, the 4, are nonsingular for all k£, and A = 0.

It is clear that if for some p > 0, Ais an eigenvalue of 4, 4, ,..., 4, but not
of A, , then 0 < d(A) < p. It might be surmised that in fact d(A) = p, but
in general this will not be true, as may be easily seen by noting that the only
term containing a, in the expansion of det(4d — Al)is (q; — A) det(4, — Al).
Thus if A is an eigenvalue of A, and 4, it remains an eigenvalue of 4 even if ¢,
is varied, whereas (27) cannot continue to hold, i.e., (31) to have less than full
rank when d = p, as qq is varied, unless A is an eigenvalue of 4,,,, which
cannot be the case since by Lemma 1 below it would imply that A is an eigen-
value of 4, .

We proceed to prove this Lemma, and make use of it in proving two
further lemmas relating to the cases d(A) = 0 and d(A) = 1. It is convenient
to use the notation

D,(N) =det(d, — AI), D) = det(4 — A) = D,(A).

Lemma 1. D,(0) =D, () =0= D,,(}) =0.

Proof. Let A be such that D, (A) = D, () = 0. Then corresponding to
the eigenvalue A of 4, there is an eigenvector (x, , X,.1 ,..., X)) With x, =
x, = 0, in other words the columns of 4, — A other than the first and last
are linearly dependent. For consider the cofactors of top-row elements in
det(4, — Al). Those of a, — A and a, , namely, —AD,5(A) and +a.D,. (),
are both zero. If any of the remainder are nonzero, we can take the set of
cofactors as our eigenvector elements, since D,(A) = 0. If all are zero, the
rows of A, — Al after the first are linearly dependent, with multipliers
Mpiq 5.y My, S2Y, and by symmetry the same applies to the columns. But
since A 5= 0 it is obvious by inspection of the last row that m, = 0, and we
may take (0,m,.4,..., M,y ,0) as our eigenvector. (Alternatively, since
a,x, = Ax, for an eigenvector, x, = 0 if and only if x, == 0.) In either case,
X, = X, = 0.

Now it is easy to verify that

Azz+1(03 Xp41 5e00s X)) = )\(x:v+1 sees Xp15 0),
ApiilXpig seees Xo1, 0 = A0, Xpiq 5eees Xoq)'™
It follows that A is an eigenvalue of 4,, , with eigenvector

(Xpi1 > Xpr1 + Xpi2 e Xpg -+ Xy 5 Xog) (35
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-~

LemMa 2. If A is an eigenvalue of A, , with eigenvector (X, ,..., X,)
D, (&) =0, then x, =0, x, = 0.

’

, and

Proof. By Lemma 1, D, ,(3) = 0. Thus the cofacior of ¢, — Ain 4, — Af
is nonzero, while det(4, — A7) = 0. It follows that the space of solutions of
Ap%x == Ax has dimension 1, and any solution has elements proportional o
the cofactors of top-row elements of 4, . In particular x, == 0, which implies
X, =0

We may note that in the case p = 0, i.e., when D{(A) =0, By(A) =0, we
have d{A) = 0.

LemMa 3. Let D(A) = D, (A =0, D, ,(A) = 0. Then if x is an eigen-
vector of A, corresponding to A,

AXq) = ASXqy) - (36

Proof. For simplicity we shall prove this for the case p = 0: the result
immediately generalizes for any p > 0. We assume then that D(2) = Dy(A) =
0, Do(Ay = 0.

By Lemma 1, DyA) == 0. Since the only term in D,(}) containing a, is

{z, — ) Dg(A), the equation D,(A) = 0 is equivalent to

a, = a(ay ,..., a,, A), (37}

where a,( ) is a certain rational function in the variables.
Similarly, with D.(A) == 0, D(}) = 0 is equivalent to

hY
dy = ao(al s Ay yeees Uy, A)
which when combined with (37) gives
ay = d()(a2 seees Gy s A) (38’\'

MHow let 4;x = A%, X = (X ,..., X,)’. Here x; == 0, by Lemma 2. Then (36)
will hold provided the additional condition
)

ApXy + ayXs + - + a4, =0 (39)

is satisfied. Since x; ,..., x, are all expressible as polynomials in 4, ,..., 4., A.
with x; = 0, (39) when combined with (37) is equivalent to

ay = dy(as 5., A, » A). 40
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Further, if (36) holds then A is an eigenvalue of 4. We have therefore the
following sequence of implications:

Dy(2) == 0, Dy(A) 5= 0, (37) and (40)
= D;(A) = 0, Dy(A) == 0, (37) and (40)
= A;x = Ax (for some x), D,(A) = 0, (37) and (39)
= (36), Ds(A) + 0, and (37)
= D(A) = 0, Dy(A) 5= 0, and (37)
= (38).
Thus for almost arbitrary A, @, ,..., @, (restricted only by the conditions

Dy(N) 52 0, Dy(X) = 0), (40) implies (38). We can therefore conclude that the
functions &, and d, are identical and we may now write

D) =0, A;x = Ax, Dy(A) =0
= Dy(A) 5 0, Dy(X) = 0, (37) and (38)
= Dy(A) 55 0, Dg(A) 5= 0, (37) and (40)
= (36),
which proves the theorem.

We note that in the case p = 0, d(A) = 1.
As a corollary of Lemma 3 we have:

LemMa 4. If p = 1 and D,(N) = D, 4(d) = 0, D, ,(X) 5= 0, then
D z)—l(h) = 0.
Proof. By Lemma 3,

A (Xpig eees X0 2 0) = XNO, Xpiq 5eer X2
It immediately follows that
AD—I(O: x:n+1 seeey Xy s 0)’ = A(Oa xp+1 aeeey Xp s 0)” (41)

whence A is an eigenvalue of 4,_, .
Tt is obvious that in the case p = 1, d(A) < 2. In general however we will
have d(A) = 0 in this case, since «, is arbitrary.

5. OPTIMAL RATIONAL APPROXIMATION
We consider now the optimal Q/D for the given f(x), with Qe P,.,,

DeP,. We know from the existence theorem for rational approximation
that there exists a unique optimum, say Q/D in lowest terms, and we have



APPROXIMATION BY POLYNOMIALS 267

seen in Section 2 that if D has actual degree s = i — d the problem has
“deficiency” & = d, and O has actual degree n - s’ < # + 5. Further, the
optimum must satisfy (5) and hence (27). Now any sclution of (27) with any
value of d yields Q/D with error norm E == | A |, where A is an eigenvalue of
A; while on the other hand any eigenvalue and its eigenvector satisfy an
equation of form (27) with d = 0. Since the optimum has minimum error
norm for all Q/D considered, it follows that its error norm is

E=min| x| (42)

taken over all eigenvalues A of A.

If the deficiency is 8, (27) holds with d = 8 and A = E or —E (but not
both since the optimum is unique), and if & > 0, (29) and (30) hold with
k=0,1,..,8 — 1. Moreover (27) cannot hold with A = £ or —£ for d > 8,
since then (29) and (30) would both hold with & = 8, and the optimum
weuld not be unique. Since A4, being symmetric, has a full set of distinct
eigenvectors even if some of its eigenvalues are multiple we have proved
the following theorem:

THEOREM 1. The unique rational approximation Q/D to f{x) on [—1, 1],
with Q € P,.., D e P, and f(x) given as in (1), has error norm E = minimur
eigenvalue modulus of the matrix A in (26), and actual degree of D equal to
# — O, where 3 is the deficiency.

If ithe eigenvalue of minimum modulus is unique, 8 = 0 {(and conversel:.}
Otherwise both E and —F are eigenvalues of A and

8 = max(d(£), d(—E)), (43)

ie., 8 is the largest d for which (27) has a solution with A = E or —E, there
being only one such solution for d = 8 (ie., d(E) = d(—E).)

An upper bound on 8 can be found from the orders of the eigenvalues £
and —F of A. If these are p and g, then as already noted [$(§ + 2)] <\ p and
[3(6 + 1] < g, or vice versa. It follows that

8 < 2min(p, q)ifp == ¢, S<L2p—1ifp =gq. {44}

It is important to note that since D(x) and therefore ¢(u) has actual degree
s =r — &, our solution ¢(x) has ¢, = 0, from which it follows by (27) that
by == 0, and that ¢, can be normalised to 1 as in (13). Further, the matrix
(31), with ¢ = &, has rank precisely's, as the solution is unique.

We note also that since 8 and thus s is determined through 4 from f(x) by
{43}, the /D we obtain must be in lowest terms.

640/17/3-6
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Remark. If 8 > 0, each eigenvector of 4 corresponding to the simple or
multiple eigenvalues £ and — £ yields a solution Q/D with common factors
in Q@ and D (viz, x + 1, x — 1, or (x 4 ¢)* for some ¢). On cancelling these,
Q/D reduces necessarily to the unique optimal Q/D. Thus in fact the optimum
can always be found without regard to the deficiency, i.e., by proceeding as if
8 = 0, and using either £ or —E. This will however lead to heavier calcula-
tions.

6. EXISTENCE OF ASYMPTOTIC SOLUTION

To complete our analysis of the problem we have to show that among the
solutions of (27) there is at least one giving ¢(u) with all its roots outside the
unit circle. To do this we exploit still further the dual relationship already
noted between the asymptotic solution we seek, for which 8 = 0, and the
optimal solution, for which 8 = s. The key to our proof is the observation,
easily proved by induction, that 4 has an inverse A-1 which is of similar
form when reflected in the secondary diagonal, i.e.,

b,
At = o b'2 . (45)
' by b

by- * * b2 bl b(]

o~

Thus if we denote by P the unit matrix with its columns (or rows) reversed,
then B = PA-'P has the same form as A4, and corresponds to a given poly-
nomial g(x) “dual” to f(x):

g(x) = brTm(x) + br—lT'r—l(x) + 4 bOTn+1(x) -+ - (46)
We note that the eigenvalues of B are the reciprocals of those of 4.

Now the unique optimal Q/D for g(x) is governed by Theorem 1, with 4
replaced by B, and (27) replaced by

By = uS%g) é7)

say, where we are using the notation ¢ instead of ¢, and p instead of A. Then
if (47) holds for some p and ¢, and we write

¢(d) = (560 EARAS ‘){’s s 03'--5 O)’ = (l/’s seses Sl’() H 0:---, 0),5 (48)
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we have
Pogy = Sy, Py =S5y {49}

and
Ad@g) = AS by, {50}

where A = 1/u. Conversely (50) implies (47). Thus (47) and (50) are equivalent
dual relationships, linked by (48), and to any eigenvalue p of B for which (47)
holds corresponds an eigenvatue A = 1/ of 4 for which (50) holds.

The optimal Q/D for g has deficiency & equal to the largest ¢ for which
{47) has a solution (5 when p is an eigenvalue of B of minimum modulus.
By the duality it is clear that 8 is also equal to the largest d for which (50) has
a solution ¢; when Ais an eigenvalue of 4 of maximum modulus.

Now the optimal ¢ yields a polynomial &(u) = i, + g + -+ + dar’.
with s = r — §, having all its roots inside the unit circle (8 = 5). The dual
Vector ¢y yields ¢(u) = b, -+ d,qu + o+ + e’ = wfi(1/u), which has all
its roots outside the unit circle (8 = 0). We have thus established the existence
of the asymptotic solution. Its uniqueness follows from that of the optimal
/D, which is characterized by the condition 8 = s.

Further, as already noted in Section 5, any solution of (50} with any value
of d yields Q/D witherror norm E = | Q/D — f'| = | A |. Thus the “asympto-
tic” @/D we have found has error norm F equal to the largest eigenvalue
modulus of 4:

E =max|A]l. (51)
We can now state the analog of Theorem 1:

THEOREM 2. There is a unique “asymiptotic” rational approximation Q/D
fof(xyon[—1,1, withQeP,.., De P, and f(x) given as in (1). It has error
norm E = maximum eigenvalue modulus of the matrix A in (26}, and actual
degree of D equal to v — 8, where 8 Is the deficiency.

If the eigenvalue of maximum modulus is unique, & = C {and converseiy}.
Otherwise both E and — E are eigenvalues of A, and 8 is equai to the largest 4
for which (27) has a solution with X = E or —E, there being only one such
solution for d = 8, i.e., d(E) = d(—E) -1, and

8 = max(d(F), d(—E). (52

Remarks. (1) The dual matrix B and function g{x), having been introduced
in order to prove the existence of the asymptotic solution, and tc uncover its
properties. have served their purpose: they are not needed for finding the
solution to a specific problem.
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(2) Bounds on & are given by (44), with p and g the orders of the
eigenvalues £ and — E

(3) Just as for optimal approximation, our solution must give ¢, == 0,
¢, == 0 and so normalizable to 1, and Q/D in lowest terms. If § > 0 we can
proceed as if 8 = 0, using either A = E or —E, and will obtain an equivalent
Q/D though with cancelling common factors.

(4) A theorem of Elliott and Lam [7, Theorem 4.2] states, in the
notation of this paper: If A¢ = A¢, | A| = maximum eigenvalue modulus
of A, ¢y =0, and Dy(X) =0, D;(—A) =0, then £ =|A| and no other
eigenvalue has this modulus.

In fact, when Dy(A) # O (for any eigenvalue A of A4) the condition ¢y == 0
is superfluous, by Lemma 2 with p == 0. This means also that [7, Lemma 4.5],
which gives a sufficient condition for ¢, 5= 0, is also superfluous. (Moreover
in the condition given, namely, that Dy(A) == 0, Dy(—A) # 0, the second
part is irrelevant, for, as the proof of our Lemma 2 shows, Dy(A) =0 =
¢’0 = 0.)

By our Theorem 2 it is always true that £ = maximum eigenvalue modulus
of A. The conditions on D, in {7, Theorem 4.2] merely ensure the uniqueness
of A, for they imply d(3) = 0, d(—2) < 0 (infact d(—A) = —1, since d(—A) +#
d()) when A = 4 E), and hence § = 0.

ExaMPLE. As a simple illustration of a case with positive deficiency, and
therefore not covered by [7, Theorem 4.2], consider the problem of approxi-
mating to T, ,4(x) by a polynomial of degree n. (The solution is of course the
zero polynomial, by the alternation theorem, for the error function has not
merely the necessary # -+ 2 but in fact » + 4 alternation points.)

Here r =2, a, = 1, a, = a, = 0. The cigenvalues of 4 are 1, 1, —1, so
that E=F =1.ForA =landd =0, 1, 2 the first s + 1 = 3 — d columns
of 4 — AS? have rank 1, 1, 0, i.e., in each case < 5. Thus the largest d for
which this is true is d(1) = 2. Similarly, for A = —1 the ranks are 2, 1, 1, and
d(—1) = 1. Thus the deficiency § = 2 = d(1), and we must use A =1 in
solving the problem. Then (27) gives ¢ = [1], ¢(u) = 1, M = —3(u™+® 4
u*3) = —T,.4(x), D=1, and hence Q = M -+ Df =0, giving the zero
polynomial as our solution. We note that the number of alternation pomts is
indeed n 4 2 + 6 as predicted in Section 3.

Now A; has eigenvalues 1, —1 and A4, has eigenvalue 1. Clearly the condi-
tion on A4, in [7, Theorem 4.2] is not satisfied. Similarly, [7, Theorem 3.2],
which requires (in our notation) ¢, == 0 and all roots of &(«) outside the unit
circle, where ¢ is an eigenvector of 4, is also inapplicable, for A = 1 has
general eigenvector (1, ¢, 1), with ¢ arbitrary, and A = —1 has eigenvector
(1, 0, —1)’, and in both cases the condition on &(u) is not satisfied.
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A more substantial example is given in Appendix 2, which also describes a
simple procedure for finding the polynomial Int{Q/D} without finding £
and D.

7. CLENSHAW’S CONJECTURE

As we have seen, the asymptotic approximation sought is given by the
unique solution of (26), where | A | = E. the maximum eigenvalue modulus
of 4, and s = r — 3, & being the deficiency of the problem. To the solution ¢
of (26) corresponds a polynomial $(u) = . + - — ¢y, with ¢, and
¢, == 0. Now let

i) = (u D) ) = gt o g, b= (e b))
Then it is easy to verify that (as already indicated in Section 4)
Ay = AST 15, -
By repeated multiplication by u + 1 it is clear we eventually obtain

Huy = (u - 1)° plu) = @, Fu" + - + ¥, . =, =0,

and
Ad* = Ad*,

We have thus established that to the eigenvalue A of 4 corresponds an eigen-
vector (¢y¥,.... #,.*) with ¢,* (and henece ¢y*) = 0. For simplicity we shali
rnow drop the asterisk, and normalize ¢ by taking ¢, = 1:

AL by e, b)Y = AL, &y ..o, .Y, {33
with
A=¢ekE, e =+41.

Now Clenshaw in [6] was interested in finding the maximum ratio of the
error norms S, and E,, given in (2) and (3), for all possible given poly-
nomials f(x), i.e., all possible coefficients a, ...., g, . It is of course difficult to
compute S, for given a’s but we shall, following Clenshaw (who confirmed
this empirically in a number of cases) make the plausible assumption that
when S,/E, is maximum, the norm S, is attained at x = <1, i.e.. the &’s are
ecither all of the same sign, or of alternating signs. The latter case beconies
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the former on changing x to —x, so without loss of generality we shall assume
the @’s all of the same sign, and

Sn:[a'r_i_”'—{_a{)'- (54)

Further, we know from (25) that E/E, — 1 as n — oo (with r and the g, fixed).
Thus, letting

p = (a, + - + a)/E, (55)
we shall choose the g; so as to maximize | p | . If we normalize the a; by writing
¢; = a;/€E, i=0,..,r. (56)

then (53) becomes, on rearrangement,

1 ¢1 - 1 " N - ¢i‘ — 1 €p 1
1 2 br 1 51 by
' : =1 | (57)
0 ¢y Cra :
1 ¢, o,
We may now solve for p and obtain
1 ¢—1 - - - ¢, —1
(751 1 .
PZGFerr: - . :Fr——l_!"(ierrs (58)
. 0 . .
$, !
where Fyp =1, H, =1 — ¢, , and
d—1 - - - 1
1 ‘751 ¢r~1
H, = (—1y : :
0 .
L4
=1- ‘757' - ¢r—1H1 I ¢1Hr—1 . (59)

Clearly, o0H,/éd, = —1, 0H,/0¢; = 0, > r. For t < r we have:
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LemmMa 5. OH,[2¢, = er;i ViotilPre — Hy), 1 <t <, where

M=

Yo =L, Y= — Yo-oPa s O<p<r—r—1L (60}

£
il
=

Proof. We use induction on r. First, H, = ¢> — ¢; — ¢, + 1, and
6H,0¢; = 2¢y — | = ¢, — H,, so that the lemma holds for r = 2. Now
suppose it holds for » = 2, 3,..., r — 1. Then for ¢ < r,

r—1
OH,[0py = —H,_: — Y f0H, [0
q=1

r—t—1 P—g—1
= —Hr~t + (ﬁr—z‘ - z ¢q [ Z 7:‘—Q—t—k(¢k - 1?11;):!
g=1 r=1
r—t-1 r—t—k , ’E
= (b, — H,) — z (¢ — Hﬂ[ Z 'V(rq—k)vnSDqJ
k=1 g=1
ret r—t—1
= Z ’)/r—t~k(<isk — Hy), Vi1 = = Z ’.Vr—t—l—g(isq E
k=1 0=1
which proves the lemma.
Now by (58),
F.=1+4+ Z b,H, . (61)
p=1

Hence

6F'r/a(ﬁr =H, — (]Sra

T p—t
CF fodr = H, — ¢+ ), s [ Y Vor-a(br — Hk} > r<<r
k=1

r=t+1

Thus a sufficient condition that p is a stationary function of , ,..., ¢, is that

¢k = Hic > k= 17‘“: 7, (62)

[
€D

2;: ﬁbtqsfr—t = L

This means that for smali u,

) =1+u+ - +u + 0@+
= (1 —u)™ + O+
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whence

W) = (I — w2 4 O@wr+h). (63)
In other words,

¢, = coefficient of w* in (1 — w)"12, k=1,2,..

L3k —1)
T4k 64)

which was Clenshaw’s conjecture.
The corresponding value of S,/E, i.e., | p |, is then, by (58), (61) and (62),

Fo=1+Y ¢,2 (65)

The values of the o’s in (60) are easily determined by writing
y) =1+ yyu 4+ - -y,

It then follows by (60) that y(u) $(u) = 1 + O@r+'), whence
yu) = (1 — w4 0w,

and

v, = coefficient of «* in (1 — u)1/2, k=1,2,...

—1.1.3. - 2k — 3)

T 2462 (66)
Further, if C denotes the matrix A/, we have
Co = ¢, (67)
which gives the ¢’s in succession from ¢ by
Cp = (]Sr
Cror = bra — Cyhy
Cra = Pra — Coqpy — €5 (68)

c=1— 01951 - C2¢2 -t C,.(]S,. .
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It is not immediately apparent that if the ¢’s of (64) are substituted here, the
resulting ¢’s are all of the same sign (i.e., positive), without which (54) and
hence our whole solution is invalid. However, it can be shown that the values
ei" of ¢; corresponding to any value of r are given by

. 2. | . ;
LI i S Y S RS (69)

and thus are all positive as required. A proof of (69} is given in Appendix 1.

What we have shown, then, is that the ¢’s of (64) give a matrix C with
positive elements ¢; and eigenvalue unity (or equivalently a matrix 4 = AC
with elements a; all of the same sign and eigenvalue A—A being an arbitrary
scaling factor), and are such as to make the corresponding sum ¢, + -+ -+ ¢,
(.e., (@, + - + a,)/7) a stationary function of the ¢’s. We have not however
shown that the eigenvalue 1 is an eigenvalue of maximum modulus for C, nor
that the stationary function is in fact a global or even a local maximum.
Clenshaw [6] verified the global maximum property in the cases r =1, 2,
and 2, and Lam and Elliott [8] reported that they had verified the local
maximum property in the cases r = 1, 2, 3, and 4. The global maximum
property for general r remains unproved, and at present I see no way of
proving it.

On the other hand the maximum modulus property for the eigenvalue 1
of C, or A of 4, is equivalent, as we have seen, to the polynomial ¢{u) having
no roots inside the unit circle. Thus to prove it we must prove that all partial
sums 1 -+ 1w -+ --- of the Maclaurin series for (1 — #)~*2 have nc roots
inside the unit circle. This follows, as the coefficients are nonincreasing and
positive, by the Enestrom—Kakeya Theorem (see, for example, [121).

Assuming therefore that

(a) when S,/E, i1s maximum, S, is attained at x = +1, and
(b) ¢y -+ - + ¢, is maximum when the ¢, are as in (64).

we have shown that for all f(x) as in (1), and large #,

Sn/En -’\’S»,I/E < 1 + Z 4)_2_52.

APPENDIX 1

Proof of (69). Since (68) determines the ¢{” uniquely for a particular r, we
can prove (69) by showing that the values of ¢; = ¢{” in (69) satisfy (68), i.e.

Qr+1) ¢opr =i, k=07 (A1)
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where
or = Jptt 4 G g fth
= coefficient of 1 in (1 — u?j~1/2 fo w? (1 — u?) 12 qu.
Differentiating
(1 — ’)'1/2_[ Wl — ) du = Z o,
gives

u(l — uz)—3/2f Wl — )2 du+ (1 — ) e = z Q2r + 1) o, u*"
0

or

oc

Uy o 4 2k =3 (1 — 1)2r + 1) o, 4.
k k

Equating coefficients of u?, r > k gives the recursive relation

Op,1 = (2]’/(2" + 1)) Or-1,% »
whence (A1) follows.

APPENDIX 2

Practical Considerations and Example

For a given f(x), both the optimal and the asymptotic Q/D can be found
as described in Section 4 with appropriate choice of A. In the asymptotic case,
once A and ¢(u) have been found, it is easy to determine the required integral
part of Q/D without actually finding Q and D. We have by (14) and (20)

AD{((;)) 5 (o(W) + o@™),  o(w) = —AuriHd ¢q,’>(u)1) (A2)
Now if we write
o(u) == o u™ -+ -+ + o4 + fractional part, (A3)

then
C; = — Qs py > i=mm—1,.,n-1, (Ad)
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and g, ,..., gy can be found successively from
$oo; + Doy + 0+ b0, =0, i=mn—1,.,0 (A%

It is then easy to see, since o(0) = 0, that the fractional part of ¢(u) contri-
butes —Zo, to the integral part of M/D, and hence that, apart from the
“lower order terms” in (1),

P =Tnt(Q/D) = 0, T(x) + = + o, Tyx) +~ (1) oy (A6)
As an illustrative example for the whole sclution procedure, let
) = Tosg + (12) Tysg + (5/4) T — (7/8) Ty
and suppose an asymptotic solution is required. The matrix

—7/8 5/4 12 1
54 12 1 }
12 1

1 |

has eigenvalues A =2, —2, (—3 & 73'/%)/16. Thus £ =2, and by (44)
& = 1. Since

—7/8 5/4 12
34 12 1
12 —1
1 —2

has rank 2, with column-multipliers 2, 1, I, we must have 4(2) == 8§ and
d(—2) = O {which are easily confirmed), and s = 2. Also

o =(2,11), Sy =2 4+ u -+ 12,

with roots of modulus 21/2, i.e., greater than 1 as expected.
We can now proceed at once to find the polynomial approximation to f.
By (A4),

Opu = 7/& Cpia = _5/4~ Opeg = —1/2. o4 = —1,
and by (A5) o; = — 30,41 + oige), | < 1, giving
o, =3/16, o,4=—17/32, o0,,=11/64, o, 5= 23/128....

If for definiteness we take n = 3, then

f=T,+ WD) T+ (59 T; — (7/8) Ty,
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and our approximation to it of degree 3 is
P = (3/16) Ty — (17/32) T, + (11/64) Ty -+ (23/256).

Alternatively, P can be found by using A = 2 or A = —2 and d = 0. With
A = 2, ¢ is the normalized eigenvector (2, 3, 2, 1)’ and

d@) =2 + 3u -+ 2u® + = (1 + )2 + u + ud).
Taking 6,4 ,..., 0,44 as above, o; are now found from
0; = — 53041 + 20545 + 0433), i<mn,

which give the same o; and P as before. Q and D have the common factor

x - 1.
Similarly, with A = -2, ¢ is the eigenvector (—2, 1, 0, 1)/,

du)y=—2+4u+1®=(—14+wQ2 +u-+ud,

again giving the same solution, and the common factor x — 1.

It may be of interest to compare the norm of error of P with the optimum
error for polynomials of degree n = 3, making use of (25). Using the iowest-
degree solution, we find

D=x*+ix+1%
and
w, =220x + DI*2 - (4x* — 2x® — x),
w_ = [2x — DI - 8x* + 8x% — 2x — I).

The roots of R — 2 in [—1, 1] are —1, 0, 0.885, and of R 4+ 2 are —0.858,
0.554, 1. For the error of P we have

8x — 1

R*:P——f:R—Fr(—Q—)zR—[—W.

D

Thus at the norm-points —1,..., 1 of R, R* takes successive values 1.824,
—2.221, 1.996, —1.950, 2.045, —1.957, and bounds on E; are given by

1.950 < E, < || R* | = 2.221.

(In finding the lower bound we may ignore the error 1.824 at —I, since
5 =n + 2 alternating errors remain.) Closer bounds (and an improved
approximation) are obtained on replacing P by P + 0.023, which gives

1.973 < E; < 2.198.
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Thus our polynomial P, with error norm 2.221, is a fair approximation
already, and certainly a good starting point for an approximation algorithm.
In this example # has the low value of 3. The goodness of approximation of
P of course increases with #.
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