
JOURNAL OF APPROXIMATION THEORY 17, 254-279 (1976)

The Uniform Approximation of Polynomials
by Polynomials of Lower Degree

A. TALBOT

Jvfathematics Department, BruneI University, Uxbridge, Middlesex, England

Communicated by C. W. Clenshaw

Received October 14, 1974

1. INTRODUCTION

The general problem of finding the best uniform approximation, in a given
interval, of a polynomial of degree m by a polynomial of degree n < 111 has
been solved analytically in only two cases: (i) by Chebyshev, when m = n + 1,
(ii) by Zolotarev, when m = n + 2. In case (i) the solution is expressible in
terms of the Chebyshev polynomial T",(x). In case (ii) the solution (see for
example Achieser [1, p. 280]) involves elliptic functions. Chebyshev did in
fact consider the general case in [4], and showed that hyperelliptic functions
are involved, but he did not obtain any solutions.

Since analytic solutions are effectively excluded when m > n + 2, another
approach is required. This was first provided, for large n, by Bernstein [3] and
Achieser [2]. It consists in seeking a rational function which (a) is a good
approximation to the given polynomial, and (b) has a fractional part which
for large n is small in the interval. Its integral part is then the polynomial
approximation desired: not optimal, but asymptotically optimal.

In 1964 Clenshaw [6] considered the ratio Sn/En of the uniform error norms
Sn and En , respectively, of the truncated Chebyshev expansion of the given
polynomial and the best uniform approximation. He used Bernstein's method
to estimate En when 111 - n = 2, 3, or 4, but could go no further because of
the complication of the calculations. Clenshaw was interested in a question of
practical importance, namely, whether the truncated Chebyshev expansion,
which is easy to obtain, is or is not nearly as good an approximation as the
optimum. He therefore tackled the problem of finding the maximum value
of Sn/En for a given m - 11. Subject to an assumption which he verified
experimentally, Clenshaw solved the problem for the three cases mentioned,
and noticed some surprising regularities in the solution, in particular the fact
that certain constants obtained were the first 2, 3, and 4 coefficients, respec-
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tivety, of the binomial expansion of (1 - t)-1/2. He put forward the con­
jecture that this would generalize for any value of in - n, and on this basis
obtained a general formula for max(Sn/En)'

The first published proof of Clenshaw's conjecture was given by Lam and
Elliott [8] in 1972. Using the same method and assumption as Clenshaw, they
were able to generalize his results to any value of in - n, although they
failed to consider the important question of whether the error of approxima­
tion must always be representable in the form they assumed for it. This
omission was remedied in their recent second paper [7], in which not only is
this question considered, but the norm of error is shown to be given by an
eigenvalue of a certain matrix. That this should be so is not at all surprising
however, for as is clear from the author's papers [10] and [11], any problem
of uniform approximation of polynomials or rational functions by polyno­
mials or rational functions is likely to lead to an eigenvalue problem.

The present paper uses a simplified form of the "u-method" developed
in [10, llJ, to deal with the problem treated by Lam and Elliott. Our
treatment differs significantly from theirs; we use standard results from
approximation theory rather than matrix theorems. Not only does this lead
to some simplification, but it also provides a proof that the desired solution
exists unconditionally. A proof of Clenshaw's conjecture is also given.

2. PRELIMINARY DISCUSSION

We denote the given polynomial of degree 111 by f(x), and for convenience
write 111 = n + I' + 1. We take the given interval as [-1, 1]. Letf(x) have the
expansion (with G, ~ 0)

f(x) = a,.Tmex) + G r - 1Tm- 1(x) + ... + aoTn+1(x) + lower order terms.

Then the error norm S n of the truncated expansion is

(2)

where Ii 'Il denotes maximum modulus in [-1, 1]. The error norm En of the
best nth degree polynomial approximation Pn to f is

(3)

where IP'n denotes the set of all real polynomials of degree ~ n. We note that
by the Alternation theorem, Pn - f = ±En alternately at fl + 2 or more
points on [-1, 1].
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Instead of finding Pn we shall obtain an infinite set of rational functions
Q/D, where Q E IP nH' , D E IP r , with error function

R = (Q/D) - j= MID, M=Q-Dj (4)

such that R = ± II R II alternately at n + 2 or more points on [-1, 1]. A
unique member of this set is of course the "best" or optimal rational approxi­
mation, i.e., that which minimizes II R II for all possible choices of Q E IP n+r ,

D E IP r • As is well known, this R exhibits alternation not merely at n + 2
points but in general at n + 2r + 2 points. We shall show that another like­
wise unique member of the set has instead the special property that
II Fr(Q/D)[I---->- °as 11 ---->- 00, where Fr denotes "fractional part." Its integral
part is then the desired polynomial approximation to f We shall call this
member of the set the "asymptotic Q/D." In order to prove its existence we
shall demonstrate a close "dual" relationship between the desired function
Q/D and the optimal rational approximation to a certain polynomial g of
degree m related in a special way to f Since the algebraic solution for the
asymptotic Q/D is exactly the same as for the optimal QID, we shall start by
considering the problem of finding the optimal approximation QID tof

If for this optimum, expressed in its lowest terms, the actual degrees of D
and Q are, respectively, S = r - d and n + s' = n + r - d', where d,
d' ? 0, the problem has "deficiency" 8 = mined, d'), and by the Alternation
theorem for rational approximation (see for example Rivlin [9, Theorem 5.2],
R = ± II R II alternately at K = 11 + 2r + 2 - 8 or more points on [-1, 1].
Let E = II R II .Then R2 - E2 has at least K distinct zeros in [-1, 1], of which
'T ~ 2 are at the end points ± 1 and K - 'T are internal and of order at least 2.
Thus fliP - £2D2 has at least 2(K - 'T) + 'T = 2K - 'T zeros in [-1, 1],
counting multiplicities. But its degree is 2(m + s) ~ 2(K - 1), since S ~ r - 8.
It follows that 'T = 2, i.e., R = ±Eat both end points, and that 8 = d, i.e.,
s' ~ s, so that Qhas degree at most n + s. Further, M2 - E2D2 has precisely
K - 2 internal zeros of order 2, and no external zeros. We may therefore
write, noting that M2 - £2D2 ~ °in [-1, 1],

(5)

where W is real, of degree n + r + s, and has all its roots in (-1, 1).
It is clear that if M, D, W is any triplet of real polynomials satisfying (5)

for some value of E, then II MID II = E. We shall see that if we start with any
suitable D (viz, real D as in (10) below) we can obtain many such triplets. In
general the corresponding Q = M + Df will have degree m + s, but as we
shall see, if we impose the condition found above that Q shall have nominal
degree n + s instead of m + s, then we can obtain both the optimal Q/D and
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the asymptotic Q/D which we seek. In Section 3, we obtain general solutions
of (5) and consider the implications of the desired asymptotic property, in
Section 4 we involve the given f explicitly by imposing the degree condition
on Q, and in Section 6 we use the existence of the optimal Q/D to establish
the existence of the Q/D sought.

The method used is that already described in the author's earlier papers [10,
11]. However, a key step in the process, namely, the factorization of (18)
below, is treated much more simply here than in those papers, where the
treatment was based on the rather complicated surd factorization theoreo
in [10]. For the sake of completeness the method is described in full, reference
to [10] being made only at one point in Section 4.

Remark. The method to be described requires (5) or an equivalent
equati.on as a starting point. Unfortunately best-approximation problems
involving polynomials and rational functions do not always lead to equations
of this form. For example, in the case r = 1 (i.e., the case solved by Zolotarev)
the optimal error function satisfies an equation either of the form

R2 - £2 = (x + 1)(x - ;3) W"

(so that only one of the end points is a "norm-poinf') which is reducible to
the form (5) by a simple linear transformation in x; or of the form

R" - £2 = (x2 - 1)(x -x)(x - (3) un

which requires elliptic functions for its solution, and cannot be dealt with by
the present method.

3. GENERAL SOLUTIONS OF (5)

We rewrite (5) as

M2 - (x2 - 1) TP = PD"

and make the left-hand side factorizable by means of the substitution

giving

We note that

(6)

(7)

k = 0,1,2,.... (9)
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Now to allow for possibly degenerate solutions we suppose D has degree
s = r -- d, d ;;:: 0, say

s

D = TI (x - Xi),
1

Each Xi can be expressed as

xi¢= [-1,1]. (10)

where there are two possible values of Ui , reciprocals of each other.
Combining (7) and (11) gives

x - Xi = (-I/2uj)(u - u¥u-I - Uj),

so that if we write

(11) ,

(12)

s

cp(u) = TI (u - Ui) = CPsu s + ... + CPIu + CPo (13)
1

we have

We now define

p(U) = M(x) + teu - u-I ) W(x),

(14)

(15)

with the sign of W chosen so that p(u) is of order O(urn+s) for large U (i.e.,
there is no cancellation of leading terms in (15)). Then

and we have

while by (6)

p(U-I) = M(x) - t(u - u-I) W(x).

M = t(p(u) + p(U-I)),

(16)

(17)

(18)

Now by (15) and (16) p(u) and p(U-I) have no poles except possibly at u = 0,
so by (18) they can have no zeros except at u = °and at zeros of cp(u), cp(u-1).

There are then only two distinct possibilities arising from (18):

(a) p(u) = (-Aj2scpo) cp2(U) uT
, (,\ = ±E, 1" an integer),

or
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Case (b) leads to a solution in which M, W, and D automatically have
common factors, and we disregard this as it is not needed. An apparent
modification of (a) in which some or all of the factors of rp(u) are replaced by
corresponding factors of rp(u-1) is easily seen to lead to the same solution as
(a), bearing in mind that

where Uf
l is an alternative choice for Ui , for a given Xi • Thus we shall take (a)

as our expression for rp(u). Since p(u) = O(um -:- s), it follows at once that

T=m-s=n+l+d.

Thus

and

(A = ±E, E = : A I), (19)

Now if the Xj are all distinct (and otherwise a continuity argument may be
used),

Fr ('JL) = Fr '1vI) = L M(xj)
D , ~ D , (x - Xi) D'(x;)

where

-A
At(x.) = -?lef; U:-ii-l-dA.2(U:-l).

J s+ J 'f' J
- 0

As will be seen in Section 4, the Ui and Adepend only on the r +- 1 prescribed
leading coefficients in the expansion (1) ofP, and not at all on n. Hence

:1 Fr(Q/D)II-->- 0 as 11 -->- 00 if and only if all : Uj ! > 1.2 (21)

Now any solution Q/D, after reduction if necessary to lowest terms, cor­
responds to 1vI and D without common factors. This means by (14) and (20)
that ef;(u) and ep(u-1) then have no common factor, in other words I Uj I cF 1

1 The remaining coefficients are unimportant, for they contribute merely an additive
polynomial of degree n to the solution.

2 Obviously for any given D satisfying (10) the IIj can be chosen to satisfy the condition
I U; I > 1. However, we still have to impose the degree condition on Q, which in fact
takes the form (26), and so determines </>(u) rather than D(x). Thus, the choice of Uj is not
at our disposal, and it will be our task in Section 5 to show that there is a solution </;(u)
of (26) which satisfies the condition in (21).
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for allj. (Note that this also implies that our solutions, when in lowest terms,
satisfy the condition on the Xj in (10). This follows alternatively directly
from (6).) Thus if we denote by (3 the number of zeros Uj of fj>(u) inside the
unit circle, the asymptotic property sought will be achieved if (3 = O.

We now derive a simple general relation between (3 and the number ex of
alternation points on [-1, 1] (i.e., points at which R = ±E alternately.)
For this, we note that the transformation (7) maps the semicircle u = ei8,

o~ e~ 'Tr onto the interval 1 ~ x ?: -1, where x = cos e. On moving
round the semicircle, we have by (19)

L1 argp = (n + 1 + d)7T + 2(3'Tr.

On the other hand, we have on the semicircle

p(U) = M + iWsin e,
where Al and Ware real, so that

L1 argp = (ex - 1) 'Tr.

It follows that

ex = n + 2 + d + 2(3. (22)

Thus for any solution of (5) in which D has degree s = I' - d th,e number of
alternation points must be at least 11 + 2 + d, and for the asymptotic solution
we seek (if it exists) for which (3 = 0 the number is precisely 12 + 2 + d, i.e.,
in the case d = 0 the same as for the optimal polynomial Pn . For the optimal
rational function on the other hand the number is at least K = n + 2 +
21' - d, so that for this solution (3 must be equal to s, its maximum possible
value.

We have thus exhibited a kind of inverse relationship between the optimal
and the asymptotic Q/D. We shall see in Section 6 that there is a further
relationship between these two through which we can prove the existence of
the asymptotic Q/D. Now assuming this for a moment, suppose that the
alternation points in [-1, 1] are Y1, Y2 ,... in ascending order. Then if
P = Int(Q/D),

k = 1,... , n + 2 + d,

where E = ±1. Thus if II Fr(Q/D)11 = v < E, P - I alternates in sign at the
Y", and, using de la Vallee Poussin's theorem (e.g., Cheney [5, p. 77])
accordingly,

E - v ~ En+d ~ En ~ II P - III ~ E + v. (23)
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Now as we have seen, v --+ 0 as n --+ oc, and moreover, because of the form
of fin (1), if ap is the first of ao, a1 , ... , which is nonzero, En ~ En+p ~

I a p I , if n ~ 1"/2 (see [5, p. 137 Theorem 5]). It follows that, for fixed I" and
fixed ao,... , G;.,

E/En--+l as n --+ 00. (24)

Remark. When ¢(u) is known, the internal norm-points of error, where
R = +E or -E, may be found jointly as the roots of W(x) = 2(p(u) ­
p(u-1)/(u - u-1). They may however be found separately as roots of two
polynomials each of about half the degree of W, for by (4), (14) and (20)

(25)

where

If n + d is odd, say 2h - 1, the identities

give

W - (x2 - 1)1/2 (-I.. U ..L ••• ..L -I.. U )- - ~ 'f'O 11-1 I I \jJ's ll,s-l ~

while if n + d is even, say 2h, the identities

give

w± = [t(x ± 1)]1/2 (=f ¢OU"-1 + (¢o =f ¢1) u" + .,.
+ (¢H + ¢,) Uh +S - 1 + ¢Ph+J

The internal norm-points are roots of w± other than 1 or -1. They may of
course also be found directly from w± above as functions of 11.

4. SOLUTIONS FOR GIVEN I(x)

We have so far considered solutions of (5) with arbitrary D of degree s
(and nonzero on [-1, 1]), but without reference to f(x). We must now
impose the condition that Q = M + Dfhas degree n + s (or less) instead of
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m + s = 11 + S + I" + 1. Now for large u we have, on dividing by cp(u),

while QN(u) = O(un). Equating coefficients of un+l, un+2, ••• , um on both sides
of the equation

(M + Df)N(u) = QN(u)

gives a set of equations which may be written

ar-1 a,.

~"~
0

ar CP1
0

=,\ CPo (26)

:'J
CP1

0

CPs

or briefly

Acp(d) = ASdcp(d) (27)

where A is the (I" + 1) X (I' + 1) triangular Hankel matrix shown, CP(d) is an
(I' + I)-element vector consisting of the S + 1 coefficients of cp(u) (forming a
vector cP, say) supplemented by d zero elements, and S is a shifting matrix
defined by

(S)ij = 1

=0
if i = j + 1 = 2, ... , r + 1,
otherwise.

Now it is clear by inspection of (26) that if An is the matrix (with leading
element a" and of similar form to A) obtained from A by deleting the first h
rows and the last h columns (so that Ao = A), then (26) implies that

k = 0,1,... , d. (28)

Thus in particular ,\ is an eigenvalue of Ad and cP an eigenvector. It is now
obvious that with such ,\ and cP, if d > 0 the first d equations in (26) will not
in general be satisfied. Thus in general we must have d = 0, and ,\ an eigen­
value of A with eigenvector cp.
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In exceptional (degenerate) cases however (27) may have a solution for
some d > O. It then follows (as was shown in [10]) that the equations

AY(I;) = ASkY(k),

AZ(k) = -ASl:z(lJ ,

(29)

(30)

both have solutions for k = d - 1, d - 2, ... , 1, O. (These solutions
correspond to multiplying 4>(u) by one or more of 1 + U, 1 - ii, or factors
of the form 1 + 2Cll + u2 (with arbitrary c), and hence D, M, and Q by one
or more common factors x + 1, x-lor (x + c)2.) In particular, taking
k = O. it follows that if (27) has a solution for some d > 0, then although
CPU;) is not an eigenvector of A, both Aand -I. must be eigenvalues of A. (In
fact, as was shown in [10], ,\ is an eigenvalue of order at least [t(d -:- 2)] and
-A of order at least [Hd + 1)].)

For eigenvalues ;\ of A we shall denote by deAl the largest value of d for
which (27) has a solution; for non-eigenvalues Ait is convenient to let d(A) =

--1. Now (27) has a solution if and only if the first r + 1 - d = s -+- 1
columns of A - A.Sd are linearly dependent, i.e., the matrix

as 1

G d- 1

ad - ,\

ad+l a d+2 - It

a,.

aj' - It

o
-,\

a r

o

(31)

has rank at most s. Thus if Ais an eigenvalue of A, deAl is the maximum value
of d for which this is true.

From the results above it is clear that for any A,

i deAl - d( -A)! :'( 1.

We note next that just as (27) implies (28), so (29) and (30) imply

O:'(h:'(k:'(d-l:

(32)

(33)

(34)
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whence A and -A are eigenvalues of all A k , 0 ~ k ~ d - 1, if (27) holds,
while as we have seen Ais also an eigenvalue of Ad . We note also that since by
assumption a,_ oF 0, the A" are nonsingular for all k, and A~ O.

It is clear that if for some p ;?: 0, Ais an eigenvalue of A, AI, ... , Ap but not
of AMI' then 0 ~ d(A) ~ p. It might be surmised that in fact d(A) = p, but
in general this will not be true, as may be easily seen by noting that the only
term containing ao in the expansion of det(A - AI) is (ao - A) det(Az - AI).
Thus if Ais an eigenvalue of Az and A, it remains an eigenvalue of Ii even if Clo
is varied, whereas (27) cannot continue to hold, i.e., (31) to have less than full
rank when d = p, as ao is varied, unless A is an eigenvalue of Ap+z, which
cannot be the case since by Lemma 1 below it would imply that Ais an eigen­
value of Ap+l .

We proceed to prove this Lemma, and make use of it in proving two
further lemmas relating to the cases d(A) = 0 and d(A) = 1. It is convenient
to use the notation

DiA) = det(Ap - AI), D(A) = det(A - AI) = Do(A).

LEMMA 1. DP(A) = D p+2(A) = 0 => Dp+l(A) = O.

Proof Let A be such that Dp(A) = Dp+z(A) = O. Then corresponding to
the eigenvalue A of A p there is an eigenvector (xp 'XP+l , ... , x,.)' with X p =
X,_ = 0, in other words the columns of A p - AI other than the first and last
are linearly dependent. For consider the cofactors of top-row elements in
det(Ap - AI). Those of ap - Aand a,., namely, -ADp+z(A) and ±a,.Dp+z(A),
are both zero. If any of the remainder are nonzero, we can take the set of
cofactors as our eigenvector elements, since DiA) = O. If all are zero, the
rows of A p - AI after the first are linearly dependent, with multipliers
mp+l , ... , m" say, and by symmetry the same applies to the columns. But
since A =1= 0 it is obvious by inspection of the last row that m.r = 0, and we
may take (0, mp+l , ... , m,.-I, 0)' as our eigenvector. (Alternatively, since
a,.xp = Ax,_ for an eigenvector, X p = 0 if and only if X,. = 0.) In either case,
X p = X,. = O.

Now it is easy to verify that

It follows that Ais an eigenvalue of Ap+I , with eigenvector

(35)
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LEMMA 2. If A is an eigenvalue of A;>, with eigenvector (x" ,... , x,.)', and
Dp+l(A) ~ 0, thell X p ~ 0, x,. ~ o.

Proof By Lemma 1, D p+2(A) = 0. Thus the cofactor of ap - A. in A" - AI
is nonzero, while det(A.o - AI) = O. It follows that the space of solutions of
A l1x = Ax has dimension 1, and any solution has elements proportional to
the cofactors of top-row elements of A p • In particula:- x" * 0, which implies
XI' ~ O.

'Ne may note that in the case p = 0, i.e., when D(A) = 0, DiCA) c= 0, we
have d(A) = O.

LEMMA 3. Let Dp(A) = D p +1(A) = 0, D p +2(A) =!= O. Then ifx is an eigen­
l'ecror of A 1'+1 corresponding to A,

(36)

Proof For simplicity we shall prove this for the case p = 0: the result
immediately generalizes for any p > 0. We assume then that DU,) = Dl(i\) =
0, D 2(A) == O.

By Lemma 1, D3(A) =/= O. Since the only term in D l (/,) containing a l is
(Ci l - t,) D 3(i\), the equation Dl(i\) = °is equivalent to

(37)

where ale ) is a certain rational function in the variables.
Similarly, with D 2(,\) =!= 0, D(A) = °is equivalent to

which when combined with (37) gives

ao = iiO(a2 , ... , a,. , A). (38)

Now let Alx = AX, x = (Xl , ... , X,.)'. Here Xl oF 0, by Lemma 2. Then (36)
will hold provided the additional condition

(39)

is satisfied. Since Xl, ... , X r are all expressible as polynomials in °2 , ... , Or, 1\.
with Xl ='= 0, (39) when combined with (37) is equivalent to

ao = iio(az ,... , a,. , A). (40)
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Further, if (36) holds then A is an eigenvalue of A. We have therefore the
following sequence of implications:

D2(A) 7'= 0, D3(A) 7" 0, (37) and (40)

=> DI(A) = 0, DzCA) -;- 0, (37) and (40)

=> A1x = Ax (for some x), D2(A) oF 0, (37) and (39)

=> (36), D2(A) 7'= 0, and (37)

=> D(A) = 0, D2(A) =1= 0, and (37)

=> (38).

Thus for almost arbitrary .\, az ,... , a,- (restricted only by the conditions
Dz(A) =1= 0, D3(A) oF 0), (40) implies (38). We can therefore conclude that the
functions ao and ao are identical and we may now write

D(A) = 0, A1x = Ax, Dz(.\) -;.- °
=> D2(.\) =1= 0, D3(A) oF 0, (37) and (38)

=> D2(A) =1= 0, D3(A) oF 0, (37) and (40)

=> (36),

which proves the theorem.
We note that in the case p = 0, d(A) = 1.
As a corollary of Lemma 3 we have:

LEMMA 4. If p ~ I and DiA) = Dp +1(A) = 0, D p +2(A) oF 0, then
Dp_1(A) = 0.

Proof By Lemma 3,

Aixp+1 , ••• , x.,. , 0)' = .\(0, Xp+l , ••• , x r)'.

It immediately follows that

Ap_1(0, XP+l , ... , X,_, 0)' = A(O, xp+l , ... , Xi"' 0)', (41)

whence Ais an eigenvalue of A p-l •

It is obvious that in the case p = 1, d(A) ~ 2. In general however we will
have d(A) = °in this case, since ao is arbitrary.

5. OPTIMAL RATIONAL ApPROXIMATION

We consider now the optimal Q/D for the given f(x), with QE IP'n+r'
DE IP'r. We know from the existence theorem for rational approximation
that there exists a unique optimum, say Q/D in lowest terms, and we have
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seen in Section 2 that if fj has actual degree s = i" ~ d the problem has
"deficiency" [) = d, and Qhas actual degree n + s' ~ }l + s. Further, the
optimum must satisfy (5) and hence (27). Now any solution of (27) with any
value of d yields Q/D with error norm E = I A I, where ,\ is an eigenvalue of
A; while on the other hand any eigenvalue and its eigenvector satisfy an
equation of form (27) with d = O. Since the optimum has minimum error
norm for all Q/D considered, it follows that its error norm is

(42)

taken over all eigenvalues ,\ of A.
If the deficiency is 0, (27) holds with d = [) and A = E or - E (but not

both since the optimum is unique), and if 8 > 0, (29) and (30) hold with
k = 0, 1, ... , [) - 1. Moreover (27) cannot hold with ,\ = Eor - E for d > 8,
since then (29) and (30) would both hold with k = 0, and the optimum
would not be unique. Since A, being symmetric, has a full set of distinct
eigenvectors even if some of its eigenvalues are multiple \ve have proved
the following theorem:

THEOREM 1. The unique rational approximation Q/D to j(x) on [-1,1],
with Q EO IP' 7/+r , D EO IP'" and j(x) given as in (1), has error norm E = minimum
eigenvalue modulus of the matrix A in (26), and actual degree of D equal fa

r - 8, where [) is the deficiency.
If the eigenvalue of minimum modulus is unique, 8 = 0 (and conversel,'.)

Otherwise both E and - E are eigenwlues of A and

0= max(d(E), de-E»~, (43'. )

i.e., 8 is the largest d for which (27) has a solution with A = E or - E, there
being only one such solution for d = 8 (i.e., deE) =;!= d( -E).)

An upper bound on 0 can be found from the orders of the eigenvalues E
and - E of A. If these are p and q, then as already noted [teo + 2)J <; p and
W8 + l)J <; q, or vice versa. It follows that

8 <; 2 min(p, q) if p ~ q, o<; 2p - 1 if p = q. (44)

It is important to note that since D(x) and therefore cP(u) has actual degree
s = r - 0, our solution cP(u) has cPs =1= 0, from which it follows by (27) that
cPo =ic 0, and that cPs can be normalised to 1 as in (l3). Further, the matrix
(31), with d = 8, has rank precisely" s, as the solution is unique.

We note also that since 0 and thus s is determined through A fromj(x) by
(43), the Q/D we obtain must be in lowest terms.
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Remark. If 8 > 0, each eigenvector of A corresponding to the simple or
multiple eigenvalues E and -E yields a solution QID with common factors
in Q and D (viz, x + 1, x-I, or (x + c)2 for some c). On cancelling these,
QID reduces necessarily to the unique optimal QID. Thus in fact the optimum
can always be found without regard to the deficiency, i.e., by proceeding as if
[) = 0, and using either E or -E. This will however lead to heavier calcula­
tions.

6. EXISTENCE OF ASYMPTOTIC SOLUTION

To complete our analysis of the problem we have to show that among the
solutions of (27) there is at least one giving 4>(u) with all its roots outside the
unit circle. To do this we exploit still further the dual relationship already
noted between the asymptotic solution we seek, for which (3 = 0, and the
optimal solution, for which (3 = s. The key to our proof is the observation,
easily proved by induction, that A has an inverse A-I which is of similar
form when reflected in the secondary diagonal, i.e.,

b,.

°
A-I =

b2

(45)

b2 bI

b,. b2 bI bo

Thus if we denote by P the unit matrix with its columns (or rows) reversed,
then B = PA-Ip has the same form as A, and corresponds to a given poly­
nomial g(x) "dual" to j(x):

We note that the eigenvalues of B are the reciprocals of those ofA.
Now the unique optimal QID for g(x) is governed by Theorem 1, with A

replaced by B, and (27) replaced by

(47)

say, where we are using the notation tlJ instead of 4>, and (.t instead of A. Then
if (47) holds for some (.t and tlJ(d), and we write

4>(d) = (cPo ,... , cPs, 0,... , 0)' = (!f;s ,..., !f;o, 0, ... , 0)', (48)
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and

(49)

(50)

where A. = IiIL. Conversely (50) implies (47). Thus (47) and (50) are equivalent
dual relationships, linked by (48), and to any eigenvalue IL of B for which (47)
holds corresponds an eigenvalue'\ = tilL of A for which (50) holds.

The optimal QID for g has deficiency 0 equal to the largest d for which
(47) has a solution o.J.I(d) when IL is an eigenvalue of B of minimum modulus.
By the duality it is clear that 0 is also equal to the largest d for which (50) has
a solution cP(d) when A is an eigenvalue of A of maximum modulus

Now the optimal o.J.I(a) yields a polynomial if;(ll) = if;o --r o/lli --:-- ... + if;s~t\

with s = r - 0, having all its roots inside the unit circle «(3 = s). The dual
vector cP(lJ) yields if;(u) = if;s + if;S-lli + ... + folls = uSf(llu), vvhich has all
its roots outside the unit circle «(3 = 0). We have thus established the existence
of the asymptotic solution. Its uniqueness follows from that of the optimal
Q/D, which is characterized by the condition (3 = s.

Further, as already noted in Section 5, any solution of (50) with any value
of d yields Q/D with error norm E = [I QID - f:1 = I A. I. Thus the "asympto­
tic" QID we have found has error norm E equal to the largest eigenvalue
modulus of A:

(51 )

'We can now state the analog of Theorem 1:

THEOREM 2. There is a unique "asymptotic" rational approximation QID
to f(x) on [-1, 1], with Q E IP nH , DE IP c and f(x) given as in (1). It has error
norm lJ = maximum eigenvalue modulus of the matrix A in (26), and actual
degree of D equal to I' - 0, where 0 is the deficiency.

If the eigenvalue of maximum modulus is unique, 8 = 0 (and conVefSe(Fj
Otherwise both E and - E are eigenvalues ofA, and 8 is equal to the largest d
for which (27) has a solution with A. = E or - E, there being only one such
solution for d = 8, i.e., deE) = de-E) ±l, and

0= max(d(E), de-E). (52)

Remarks. (1) The dual matrix B and function g(x), having been introduced
in order to prove the existence of the asymptotic solution, and to uncover its
properties, have served their purpose: they are not needed for finding the
solution to a specific problem.
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(2) Bounds on I) are given by (44), with p and q the orders of the
eigenvalues E and - E.

(3) Just as for optimal approximation, our solution must give CPo ~ 0,
CPs ~ °and so normalizable to 1, and Q/D in lowest terms. If I) > 0 we can
proceed as if I) = 0, using either .\ = E or - E, and will obtain an equivalent
Q/D though with cancelling common factors.

(4) A theorem of Elliott and Lam [7, Theorem 4.2] states, in the
notation of this paper: If Ac{J = .\c{J, [ .\ I = maximum eigenvalue modulus
of A, CPo # 0, and D i (.\) =1= 0, D i ( -.\) =f= 0, then E = [ .\ [ and no other
eigenvalue has this modulus.

In fact, when DI (.\) =1= 0 (for any eigenvalue .\ of A) the condition CPc =1= °
is superfluous, by Lemma 2 withp = O. This means also that [7, Lemma 4.5],
which gives a sufficient condition for CPo =1= 0, is also superfluous. (Moreover
in the condition given, namely, that D2(.\) # 0, D2( -.\) # 0, the second
part is irrelevant, for, as the proof of our Lemma 2 shows, D 2(.\) ~°=>­

CPo ~ 0.)
By our Theorem 2 it is always true that E = maximum eigenvalue modulus

of A. The conditions on DI in [7, Theorem 4.2] merely ensure the uniqueness
orA., for they imply d(.\) = 0, d(-.\) ::(: 0 (in fact d( -.\) = -1, since d(-.\) =1=
d(.\) when .\ = ±E), and hence I) = O.

EXAMPLE. As a simple illustration of a case with positive deficiency, and
therefore not covered by [7, Theorem 4.2], consider the problem of approxi­
mating to Tn +3(x) by a polynomial of degree n. (The solution is of course the
zero polynomial, by the alternation theorem, for the error function has not
merely the necessary n + 2 but in fact n + 4 alternation points.)

Here r = 2, a2 = 1, ai = ao = O. The eigenvalues of A are 1, 1, -1, so
that E = E = 1. For .\ = 1 and d = 0, 1, 2 the first s + 1 = 3 - d columns
of A - '\Sd have rank 1, 1, 0, i.e., in each case ::(: s. Thus the largest d for
which this is true is d(l) = 2. Similarly, for .\ = -1 the ranks are 2, 1, 1, and
d( -1) = 1. Thus the deficiency I) = 2 = d(1), and we must use .\ = 1 in
solving the problem. Then (27) gives c/J = [1], cp(u) = 1, M = _·HU"-f-3 +
u-n - 3) = -Tn +3(x), D = 1, and hence Q = M + Df= 0, giving the zero
polynomial as our solution. We note that the number of alternation points is
indeed n + 2 + I) as predicted in Section 3.

Now Al has eigenvalues 1, -1 and A 2 has eigenvalue 1. Clearly the condi­
tion on Al in [7, Theorem 4.2] is not satisfied. Similarly, [7, Theorem 3.2],
which requires (in our notation) CPo ~ 0 and all roots of cp(u) outside the unit
circle, where cP is an eigenvector of A, is also inapplicable, for .\ = 1 has
general eigenvector (1, c, 1)', with c arbitrary, and .\ = -1 has eigenvector
(1,0, -1)', and in both cases the condition on cp(u) is not satisfied.
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A more substantial example is given in Appendix 2, which also describes a
simple procedure for finding the polynomial Int(Q/D) without finding Q
and D.

7. CLENSHAW'S CONJECTURE

As we have seen, the asymptotic approximation sought is given by the
unique solution of (26), where i A i = E, the maximum eigenvalue modulus
of A, and s = r - 0, 0 being the deficiency of the problem. To the solution 1>
of (26) corresponds a polynomial ~(u) = ~i~l"' +- ... ~ ~o' with rPs and
epo TO. Now let

JAu) = (11 -'- 1) cb(u) = ,/._ us+1 + '" + I};, • t.p;:. .1 , 0 ,

Then it is easy to verify that (as already indicated in Section 4)

By repeated multiplication by 11 -+- 1 it is clear we eventually obtain

and

~*(u) = (ll +- 1)/3 ~(ll) = ~,*u;' +- ... + ~o*.

Ac{J* = Ac{J*.

~*-' -'-0'/-'( '- rps"-- ,

We have thus established that to the eigenvalue Aof A corresponds an eigen­
vector (~o*,... , ep,*) with ~,.* (and hence epo*) ~ O. For simplicity we shall
now drop the asterisk, and normalize c{J by taking epo = 1:

with

A(l, epl ,... , ~,.)' = '\(1, ~l ..... ~,.)', (53)

E =±1.

Now Clenshaw in [6] was interested in finding the maximum ratio of the
error norms Sn and En , given in (2) and (3), for all possible given poly­
nomials f(x), i.e., all possible coefficients a,. ,... , ao . It is of course difficult to
compute Sn for given a's but v\le shall, following Clenshaw (who confirmed
this empirically in a number of cases) make the plausible assumption that
when Sri/En is maximum, the norm Sn is attained at x = ±l, i.e .. the a's are
either all of the same sign, or of alternating signs. The latter case becomes
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the former on changing x to -x, so without loss of generality we shall assume
the a's all of the same sign, and

(54)

Further, we know from (25) that E/E n ---,>- I as 11 ---,>- w (with r and the at fixed).
Thus, letting

(55)

we shall choose the ai so as to maximize Ipl. Ifwe normalize the at by writing

then (53) becomes, on rearrangement,

i = 0, ... , r. (56)

4>1 - I 4>,. - I Ep
1 4>1 4>,.-1 C1

° 4>1 cr - 1

1 c,.

We may now solve for p and obtain

I

4>1
(57)

p = EF,., Fr =

°4>,.

whereFo = 1, H 1 = 1 - 4>1' and

4>r - 1

= F"_1 + 4>,.H,. , (58)

HI' = (-1)'

° 1 4>1
= 1 - 4>,. - 4>r-1Hl - ... - 4>lH,.-l .

Clearly, 8H,./84>,. = -1, 8Hr/84>t = 0, t > r. For t < r we have:

(59)
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Yo = 1,
p

Yp = - L YP-qrPq,
q~1

O<p~r-t-1. (60)

Proof We use induction on r. First, H 2 = c?I" - c/>1 - rP2 + 1, and
oH2/0rPl = 2rPi - 1 = c?1 - HI , so that the lemma holds for r = 2. Now
suppose it holds for r = 2, 3, ... , r - 1. Then for t < r,

1'-1

oH"/0rPt = - H,._t - L rPioH,'_q/crPt)
q~1

l'-t 1'-t-1

= L YI'-H:CrPle - Hie)' YI'-(-1 = - L Yr-t-l-qrPq,
k=l ~=l

which proves the lemma.
Now by (58),

Hence

"
F,. = 1 + L rPpHp .

p~1

(61)

t < r,

Thus a sufficient condition that p is a stationary function of <PI ,.", rPt is that

k = 1, .. " r, (62)

I.e.,
'1'

I rPtrPH = 1.
o

This means that for small u,

c/>2(U) = 1 + u + ... + ur + 0(ur +1)

= (1 - U)-1 + O(ur+l)
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whence

In other words,
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cp(u) = (1 - u)-lf2 + O(Ur+I). (63)

CPk = coefficient of Uk in (1 - U)-lf2,

1. 3.... (2k - 1)
2.4.... 2k

k = 1,2,...

(64)

which was Clenshaw's conjecture.
The corresponding value of Sn/E, i.e., I pi, is then, by (58), (61) and (62),

The values of the y's in (60) are easily determined by writing

y(u) = 1 + ylu + ... + y,.ur•

It then follows by (60) that y(u) cp(u) = 1 + O(Ur+I), whence

y(u) = (1 - u)lf2+ O(uT+1),

and

(65)

Yk = coefficient of Uk in (1 - u)lf2,

-1. 1. 3 (2k - 3)
2.4.6 ·2k

Further, if C denotes the matrix A/>.., we have

Ccp = cp,

which gives the e's in succession from cp by

c.,. = CPr

e,,._1 = CP,.-I - e"cpI

Cr-2 = CP"-2 - C"-ICPI - C"CP2

k = 1,2,...

(66)

(67)

(68)
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It is not immediately apparent that if the 1>'s of (64) are substituted here, the
resulting c's are all of the same sign (i.e., positive), without which (54) and
hence our whole solution is invalid. However, it can be shown that the values
c?) of Ci corresponding to any value of r are given by

(1') 2r + I -f.. -f..
Ci = 2i + I 'f','-;'f'," i = 0, 1" .. , r, (69)

and thus are all positive as required. A proof of (69) is given in Appendix l.
What we have shown, then, is that the 1>'s of (64) give a matrix C with

positive elements Ci and eigenvalue unity (or equivalently a matrix A = AC
with elements ai all of the same sign and eigenvalue A-A being an arbitrary
scaling factor), and are such as to make the corresponding sum Co + '" + c,.
(i.e., (ao + ... + a,.)/>..) a stationary function of the rj/s. We have not however
shown that the eigenvalue I is an eigenvalue of maximum modulus for C, nor
that the stationary function is in fact a global or even a local maximum.
Clenshaw [6] verified the global maximum property in the cases r = 1, 2,
and 3, and Lam and Elliott [8] reported that they had verified the local
maximum property in the cases r = 1,2,3, and 4. The global maximum
property for general r remains unproved, and at present I see no way of
proving it.

On the other hand the maximum modulus property for the eigenvalue 1
of C, or Aof A, is equivalent, as we have seen, to the polynomial1>(u) having
no roots inside the unit circle. Thus to prove it we must prove that all partial
sums I + tu + ... of the Maclaurin series for (l - U)-~:'2 have no roots
inside the unit circle. This follows, as the coefficients are nonincreasing and
positive, by the Enestr6m-Kakeya Theorem (see, for example, [12]).

Assuming therefore that

(a) when S,,/En is maximum, S" is attained at x = ±1, and

(b) Co + ... + c,. is maximum when the 1>" are as in (64).

we have shown that for allf(x) as in (1), and large n,

"
S"/E" ,,,,-, S,,//1 :(; 1 + I 1>!/.

1

ApPENDIX 1

Proof of (69): Since (68) determines the CJF) uniquely for a particular r, we
can prove (69) by showing that the values of Cj = c?) in (69) satisfy (68), Le.

(2r + 1) 1>,.u,.,1' = 1>" , k = 0, ... , r (Al)
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where
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a. ,= o/Oo/r-k + 0/10/,.-k-1 + ... + o/'r-k%
',k 2k+ 1 2k+ 3 21'+ 1

= coefficient of U2r+1 in (1 - U2)-1/2 f u u2k(1 - U2)-1/2 duo
o

Differentiating

(1 - U2)-1/2 JU u2k(l - U2)-1/2 du = I a,·.ku2r+l
o k

gIves

u(l - U2)-3/2 JU U2k(l - U2)-1/2 du + (1 - U2)-1 U2k = f (21' + 1) ar,ku2r
o l'

or

oc 00

u L ar,ku2r+l + U2k = L (1 - u2)(2r + 1) a,.,ku2.,.

" k

Equating coefficients of u2r, I' > k gives the recursive relation

a",k = (2r/(2r + 1» ar-l,k ,

whence (AI) follows.

APPENDIX 2

Practical Considerations and Example

For a givenf(x), both the optimal and the asymptotic Q/D can be found
as described in Section 4 with appropriate choice of .\. In the asymptotic case,
once .\ and o/(u) have been found, it is easy to determine the required integral
part of Q/D without actually finding Q and D. We have by (14) and (20)

M(x) _ 1 -1
D(x) - 2" (a(u) + a(u »,

Now if we write

(A2)

a(u) = arnum + ... + a o + fractional part,

then

(A3)

i = m, m - 1, ... , 11 + 1, (A4)



APPROXIMATION BY POLYNOMIALS

and Un , ... , U o can be found successively from

27,

1=11,11-1, ... ,0. (AS)

It is then easy to see, since u(O) = 0, that the fractional part of G(u) contri­
butes -~uo to the integral part of M/D, and hence that, apart from the
"lower order terms" in (1),

As an illustrative example for the whole solution procedure, let

f(x) = T n+4 + (1/2) Tn+3 + (5/4) Tn+~ - (7/8) T n-'-l ,

and suppose an asymptotic solution is required. The matrix

r
-7/8 5/4 1/2 11

A = 5/4 1/2 1

1i
2

1 J
has eigenvalues A = 2, -2, (-3 ± 731 / 2)/16. Thus E = 2, and by (44)
b = 1. Since

~
-7/8 5/4 1/21
-3/4 1/2 1

1/2 -1
1 -2

has rank 2, with column-multipliers 2, 1, 1, we must have d(2) = 8 and
d( - 2) = 0 (which are easily confirmed), and s = 2. Also

q, = (2, 1, 1)', ep(U) = 2 + II + 112,

with roots of modulus 21 / 2, i.e., greater than 1 as expected.
We can now proceed at once to find the polynomial approximation to f

By (A4),

U"-'-l = 7/8, U n +2 = -5/4, a n+ 3 = -1/2. a"~4 = -1,

and by (A5) at = -l(ai+1 + ai+2), i :'( 11, giving

Un = 3/16. U n-l = -17/32, U n-2 = 11/64, U'H = 23/128.....

If for definiteness we take 11 = 3, then

f = T7 + 0/2) T6 + (5/4) T., - (7/8) T4 ,
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and our approximation to it of degree 3 is

P = (3/16) T3 - (17/32) T2 + (11/64) T1 + (23/256).

Alternatively, P can be found by using A = 2 or A = -2 and d = 0. With
,\ = 2, ep is the normalized eigenvector (2, 3, 2, 1)' and

ep(u) = 2 + 3u + 2u2 + u3 = (1 + 11)(2 + II + u2
).

Taking Un+! , ••• , U n+4 as above, Ui are now found from

. ----I"", n,

which give the same Ui and P as before. Q and D have the common factor
x + 1.

Similarly, with ,\ = --2, ep is the eigenvector (-2, 1,0, 1)',

ep(u) = -2 + u + u3 = (-1 + u)(2 + u + UZ),

again giving the same solution, and the common factor x-I.
It may be of interest to compare the norm of error of P with the optimum

error for polynomials of degree n = 3, making use of (25). Using the lowest­
degree solution, we find

D = x 2 + Ix + ±
and

w+ = 2[2(x + 1)]1/2 . (4x4 - 2x2 - x),

w_ = [2(x - 1)]1/2 . (8x4 + 8x3 - 2x - 1).

The roots of R - 2 in [-1, 1] are -1,0,0.885, and of R + 2 are -0.858,
0.554, 1. For the error of P we have

* _ _ _ _ (it) _ 89x - 1
R -- P f - R Fr D - R + 1024D .

Thus at the norm-points -1, ... , 1 of R, R* takes successive values 1.824,
-2.221, 1.996, -1.950,2.045, -1.957, and bounds on £3 are given by

1.950 ~ £3 ~ II R* II ='= 2.221.

(In finding the lower bound we may ignore the error 1.824 at -1, since
5 = n + 2 alternating errors remain.) Closer bounds (and an improved
approximation) are obtained on replacing P by P + 0.023, which gives

1.973 ~ £3 ~ 2.198.
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Thus our polynomial P, with error norm 2.221, is a fair approximation
already, and certainly a good starting point for an approximation algorithm.
In this example n has the low value of 3. The goodness of approximation of
P of course increases with n.
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